1
Why we need standards and codes in buildings. Presentation of the main standardization bodies. Presentation of the main standards and codes in buildings related to energy and indoor environmental quality. How standards are applied and how control is performed. Compliance with standards and codes.
2
Description of the local and global climate change in the urban environment. Description of the main mitigation and adaptation techniques for the urban environment. Calculation methodologies and design considerations. Presentation of good examples where mitigation and adaptation techniques are appled in the urban environment. Advantages and disandvantages.
3
Description of the physics of microclimate. Factors affecting the microclimate characteristics and quality. Main microclimatic problems. Thermal balance around the buildings. Techniques to improve the local microclimates. Examples and description of the results. How to calculate the possible impact of the microclimatic improvement techniques.
4
Indoor air quality problems in buildings. Main pollutants. Impact of indorr pollution on health, comfort and productivity. Ventilation for indoor air quality. Thresholds for concentration of indoor pollutants. Techniques to improve indoor air quality. Existing problems, solutions and good examples. Methods to evaluate indoor pollution problems.
7
Presentation and analysis of existing near zero energy buildings in different climates. Energy analysis and balance between energy conservation and renewables for each project. Efficiency and performance of the presented examples. Advantages and disadvantages of the proposed systems and building integrations.
8
Description of the principal energy consumption components in buildings. Heating, cooling lighting, equipment and hot water. Characteristics of each component. Magnitude of the absolute energy consumption for diiferent types of buildings, climates, geographical zones and social status. Temporal variation of the specific energy components through the years.
9
Design and Integration of Renewable Energy Systems in the Built environment. Interconnection to the electricity grid, energy storage. Sustainable assessment by using environmental, energy and socioeconomic criteria. Life Cycle Assessment and Ecological footprint. Regional-local energy planning. Integration in the built and urban environment. Sustainability analysis.
10
Physics of natural light. Main characteristics and definitions. How to design for efficient natural lighting systems and components. Methodologis to evaluate the levels of natural light in buildings. Glare and contrast. Good examples of architectural design for natural light and evaluation of the main characteristics.
11
What is passive cooling. Needs for passive cooling techniques. Main systems and techniques. Characteristics of the main techniques and potential energy contribution. Methodologies to design for passive cooling in different climates and geographical zones. Evaluation of the performance of the main passive cooling techniques. Presentation and analysis of good design examples.
12
Systems of artcifical lighting. Lamps and other components. Control of artificial lighting systems and daylight compensation. Evaluation methodologies for artificial lighting systems. Speciifc lighting techniques for individual buildings. Good examples of artificial lighting in buildings. Discussion and evaluation. Modern lighting systems and controls.
13
Basics of applied heat and mass transfer in buildings and open spaces. Sensible and latent heat phenomena. Conduction, convection and radiation. Evaporation and condensation. Specific heat and mass transfer phenomena on buildings. Opaque , semi opaque and transparent components.
15
Basics of intelligent control for buildings. Types and technologies of intelligent building control. Methodologies to design optical control in buildings. Smart metering and intelligent energy and environmental applications in tertiary and residential buildings. Good expamples of intelligent control and analysis.
16
Optimisation methodologies and theory. Basics of the energy otimisation techniques. Examples on the way to optimize the energy systems in buildings. Calculation methodologies. Case studies and presentation of existing optimization studies for buildings.
17
Description of the main renewable energy systems used in buildings. Performance of the existing systems. Methods to calculate the efficiency of the renewable enrgy systems in buildings. Existing succesfull applications of renewable energy systems in buildings. Exercises on the integration and optimization of renewable systems in buildings.
18
Presentation of the main measurement techniques for buildings. Presentation of the main equaipped used and methods to check the accuracy of the monitoring. Different types of Sensors and actuaros for the monitoring of buildings. Examples of monitoring systems and exercises with real equipment.
19
Description of the physics of urban climate. Main phenomena in the urban environment. Energy balance of cities. Local climate change phenomena. Urban heat island and canyon effect. Global climate change and its characteristics. Magnitude and characteristics of the local climate change for different parts of the world. Impact of local and global climate change.
20
Description of the main features of near zero energy buildings. Energy balance of buildings. Optimisation techniques for the design of optimum near zero energy buildings. Optimum integration of renewable energies and energy conservation techniques in buildings to minimize the energy consumption. Design variations as a function of the climate.
23
What is natural ventilation. Physics of natural ventilation phenomena. Stack effect and wind effects in natural ventilation. Techniques to design for natural ventilation. Single and cross natural ventilation configurations. Calculation and computer evaluation methodologies for natural ventilation phenomena. Simple empirical, network and CFD modelling. Good examples and evaluation.
25
Basic theory of acoustics in buildings. Design of optimium acoustic environments in buildings. Basic calculation methods. Examples of optimum acoustic performance in tertiary and residential buildings. Synergy of the acoustic and energy design.
26
Thermal and energy balance of buildings. What is a thermal energy simulation tool. Existing energy simulation programs. Advantages and disadvantages. How to simulate a building. Problems to avoid. Examples of energy simulation works and exercises with free simulation tools for simple and complex buildings.